⁸⁰ euro PCR

Tyrocore: a proprietary polymer uniquely designed for vascular scaffolds

PD Dr. med Gregor Leibundgut Medizinische Universitätsklinik Kantonsspital Baselland Liestal, Switzerland

Potential conflicts of interest

Speaker's name : Gregor Leibundgut

I have the following potential conflicts of interest to report: Receipt of honoraria or consultation fees: REVA Medical

Novel Tyrocore Polymer Overcomes First Generation BRS Limitations

 Limited use of first generation BRS due to poor usability and clinical outcomes.

• The **Tyrocore** bioresorbable polymer is **unique**ly designed for vascular scaffold applications.

• Fantom, a second generation BRS made from Tyrocore, offers substantial improvements over first generation BRS.

Tyrocore Polymer Designed for Vascular Scaffolds

Tyrocore Composition

Iodinated desamino-tyrosine polycarbonate

Polylactic acid diol

Features

- Biocompatibility derived from tyrosine amino acid
- Strength polycarbonate phenyl ring structure (Iodinated diphenol)
- Radiopacity covalently bound iodine to polycarbonate backbone
- Ductility
 High molecular weight and composition provide ductility
- Flexibility

Monomer molecules are linked with propane diol for flexibility

Tyrocore Offers Improved Properties Compared to PLLA

Properties of Tyrocore versus PLLA

Radiopacity

Attribute	Tyrocore	PLLA ¹	Benefit		No.	m
Ultimate Tensile	100-110 MPa	50-70 MPa	Thinner struts		Res .	today.
Strength	2 ×		Radial strength Longitudinal strength		12303 12220 122320 12230 12230	1A
Elongation at Break	120-200%	2-10%	Single-step inflation		And.	ha
(Ductility)	>50×		Larger expansion range			ist in the second secon
X-Ray Visible	Yes	No	Accurate placement	•	No.	NAT -
				Absorb	Fantom	DES

A single Fantom scaffold contains < 1% of the iodine found in 1 ml of contrast media

Fantom Improved Performance

Tyrocore's high **tensile strength** enables Fantom to have **thinner struts** while **improving strength** and **reducing recoil**

Fantom Resists Longitudinal Compression

Longitudinal Stent Compression

A force of ~0.2 N was found during recrossing with a balloon catheter

Tyrocore Benign Degradation and Resorption

Tyrocore Degradation

Degradation **Polylactic acid** desamino-tyrosine > 80% molecular weight loss ۲ polycarbonate diol Vessel uncaged in 1 year • **Hvdrolysis Resorption** (mass loss) Results in reduced radiopacity over **Iodinated Polylactic acid** time diphenol diol Completed in \sim 4 years Enzymes **Cell metabolism** OH Water & HO **Carbon dioxide** 0=C=0I₂DAT Radiolabel ADME study shows I₂DAT is safely excreted

Fantom Provides Support During Vessel Healing and Degrades in One Year

Fantom Radial Strength During Degradation

Tyrocore Biocompatibility for Excellent Vessel Healing

0-3 Months

euro

PCR

- Fantom struts are covered with mature endothelium
 - Substantially fewer adherent platelets than the Absorb control

4-12 Months

- Fantom shows no adverse reactions as vessel uncages
 - No calcification at the interface between the tissue and the scaffold, which is observed with Absorb

12-42 Months

 Fantom final degradation and benign resorption

Fantom

3-month endothelialization in rabbit artery

6-month degradation in porcine artery

Tyrocore versus PLLA Degradation and Resorption

0-12 Months - Degradation

euro

PCR

- Absorb has an early peak of lactic acid associated with coating degradation
- Fantom has minimal lactic acid

12-42 Months - Resorption

- Absorb has a large lactic acid peak between 18 and 42 months associated with scaffold resorption
- Fantom lactic acid concentration is two orders of magnitude lower than Absorb during scaffold resorption

Arterial Wall Lactic Acid Concentration during Scaffold Degradation

Computational Model

Thinner Struts (again) without Compromising Radial Strength

Strut Thickness (µm)

	Absorb ¹	Magmaris ¹	Fantom	Fantom Encore
2.5 mm	157 μm	n/a	125 µm	95 μm
3.0 mm	157 μm	166 µm	125 µm	105 μm
3.5 mm	157 μm	166 µm	125 µm	115 µm

- No changes to Tyrocore polymer composition or scaffold design
- Improved polymer processing and manufacturing techniques

Conclusions

- Tyrocore is a new and differentiated polymer for vascular scaffolds.
- Fantom offers substantial improvements over first generation BRS:
 - Reduced strut thickness
 - Increased radial strength
 - Larger expansion range
 - Radiopacity
 - Improved vessel healing
- Fantom Encore has the thinnest struts of any bioresorbable scaffold¹ without compromising radial strength or radiopacity.
- Tyrocore's strength, biocompatibility, and safety profile has been demonstrated in pre-clinical and clinical studies.

Thank you