DIDACTIC SESSION: BIORESORBABLE VASCULAR SCAFFOLDS, PART 1 - DEVICES AND EMERGING DATA

Session III. Next Generation Scaffolds Part 1: Design Iterations, Data, and Clinical Development

Colorado Convention Center, Mile High Ballroom 4E-4F, Ballroom Level Tuesday, October 31, 4:43 PM - 4:53 PM

Fantom:

A Radio-Opaque "Stent-Like" BRS With Improved Expansion Characteristics

James Hermiller, MD, FACC, MSCAI St Vincent Medical Group St Vincent Heart Center of Indiana Indianapolis, IN

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- Edwards, Medtronic, Abbott, BSC
- Edwards, Medtronic, Abbott, BSC

Fantom®

Sirolimus Eluting Bioresorbable Coronary Scaffold

1st and Only BRS Make with Tyrocore™:

- Uniquely designed for vascular scaffolds
- Derived from naturally occurring tyrosine amino acid
- Bound iodine for radiopacity
- Proprietary, patent protected, and manufactured by REVA Medical

RADIOPAQUE

Procedural accuracy

Accurate lesion coverage

Precise Placement

Full structural assessment

STRONG

Large expansion range 0.75mm for 3.0mm scaffold Maintains vessel patency

Deliverable

Thin 125µ struts

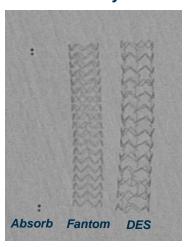
Lower crossing profile

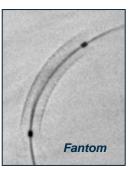
Improved flexiblity

Single step inflation
Reduced procedure time

BIOCOMPATIBLE

Rapid vessel healing Vasomotion restoration

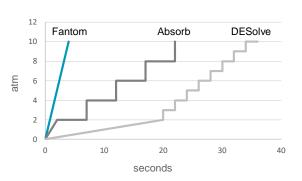




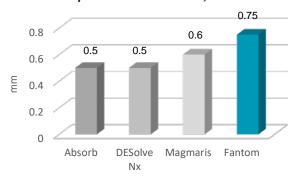
Fantom Ease of Use Features


Makes the Implant Procedure Easier

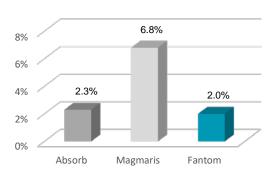
Visibility



Lower Crossing Profile²



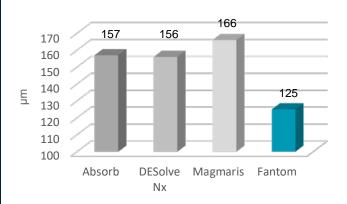
Single Step Balloon Inflation¹



Higher Expansion Tolerance²

Limit of Expansion over Nominal, 3.0 mm Scaffolds

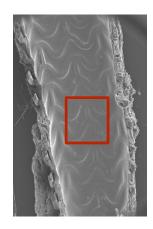
Low Recoil3

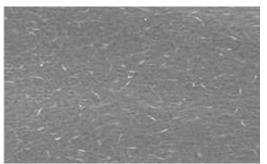


1. Product Instructions for Use. 2. Manufacturer reported data on file at Reva Medical. 3. Tests performed by and data on file at Reva Medical.

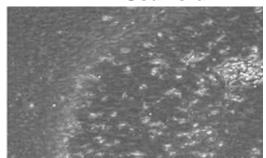
Fantom's Improved Healing

Thin Struts and High Radial Strength Contribute to Excellent Healing


Reduced Strut Thickness¹


High Radial Strength²

Bench testing on 3.0 mm scaffolds in water at 37°C



Fantom Scaffold

Fantom Healing at 3 Months
Mature, oriented cells; few platelets

PLLA Scaffold

PLLA Scaffold Healing at 3 Months
Mature & immature cells; persistent platelets

1) Values include coating. Absorb, DESolve, Magmaris source: Foin, N. Biomechanical Assessment of Bioresorbable Devices. CRT 2017. Fantom source: Holm, N. REVA Fantom II performance and healing patterns by OCT. REVA Symposium EuroPCR 2017. 2) Radial strength measured at 15% compression. Tests performed by and data on file at Reva Medical.

FANTOM II Trial

Safety & Performance Study for the Fantom Sirolimus-Eluting Bioresorbable Coronary Scaffold

FANTOM II Study Investigators

Australia

Dr. Muller, Dr. Jepson, Dr. Walters

Belgium

Dr. De Bruyne

Brazil

Dr. Abizaid, Dr. Costa, Dr. Chamie, Dr. Perin

Denmark

 Dr. Christiansen, Dr. Lassen, Dr. Okkels-Jensen

France

Dr. Carrié, Dr. Chevalier, Dr. Fajadet, Dr. Collet

Germany

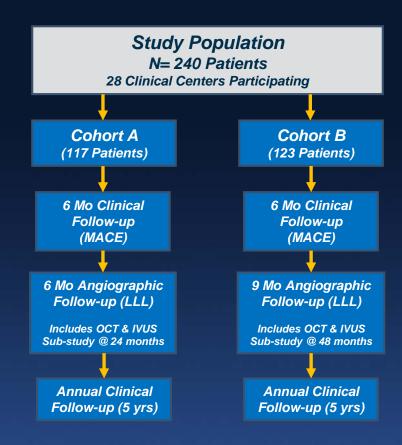
 Dr. Weber-Albers, Dr. Naber, Dr. Achenbach, Dr. Frey, Dr. Lutz, Dr. Kische, Dr. Ince, Dr. Brachmann

Netherlands

Dr. Amoroso, Dr. Wykrzykowska, Dr. Daemen

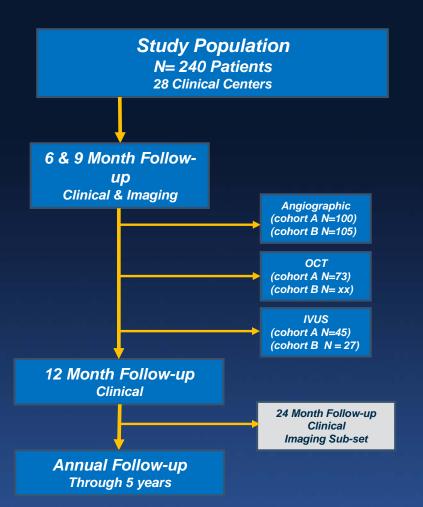
Poland

Dr. Dudek, Dr. Kochman, Dr. Koltowski, Dr. Lesiak, Dr. Wojdyla



FANTOM II Study Design and Endpoints

Study Design


- Safety and Performance Trial
- 240 patients in 2 cohorts
- 2.5mm to 3.5mm vessels
- Lesion length ≤ 20mm
- Angiographic follow-up
 - Cohort A: 6 months 117 Pts.
 - Cohort B: 9 months 123 Pts.
- Serial imaging sub-studies
 - Cohort A: 24 months (25 Patients)
 - Cohort B: 48 months (25 Patients)

FANTOM II – Cohorts A & B Study Overview and Baseline Characteristics

Patient Characteristics (N=240)		
Patient Age (average years)	62.7 ± 10.1	
Male	70.4%	
Diabetes	23.8%	
Current/Former Smoker	59.6%	
Hypertension	73.8%	
Hyperlipidemia	70.8%	
Prior PCI	43.8%	
Prior CABG	2.9%	
Prior MI	26.3%	
Recent LVEF <40%	0.0% (N=231)	

FANTOM II - Cohorts A & B

Lesion Characteristics and Procedural Outcomes

Lesion Characteristics

Target Lesion Location (n=238)1		
LAD	48.7% (116)	
LCX	31.3% (74)	
RCA	20.2% (48)	
ACC/AHA Lesion Class (n=238)1		
Type A	18.5% (44)	
Type B1	49.6% (118)	
Type B2	29.4% (70)	
Type C	2.5% (6)	

⁽¹⁾ Two pre-procedure angiograms were not available

Initial Outcomes

Acute Procedural Outcomes		
Acute Technical Success (1)	95.8%	
Acute Procedural Success (2)	99.1%	
Clinical Procedural Success (3)	99.6%	

- (1) Defined as successful delivery and deployment of the intended scaffold in the intended lesion without device related complications.
- (2) Defined as acute technical success (see definition above), resulting in a residual stenosis of ≤50 percent with no immediate (in-hospital) MACE.
- (3) Defined as acute procedural success (see definition above), with no MACE thirty days post-intervention and with a final diameter stenosis ≤50 percent.

FANTOM II - Cohort A & B

Safety Results

Components of 6-Month Primary Endpoint (modified ITT): 6 Month 12 Months non-Hierarchical (n = 240)(n = 240)**MACE** 4.2% (10) 2.1% (5) Cardiac Death $0.4\% (1)^{1}$ $0.8\% (2)^{1,2}$ MI 1.3% (3) 1.3% (3) Clinically Driven TLR 0.8% (2) 2.5% (6)

Preliminary <u>Interim</u> Data set

24 Month Ongoing (N = 125)	
5.6% (7)	
0.8 (1) ²	
2.4 (3)	
3.2 (4)	

^{*} As adjudicated by an independent Clinical Events Committee

⁽¹⁾ One patient died between 0-6 months. Exact cause of death not determined. Patient died at home 4 weeks after subsequent TAVI procedure.

⁽²⁾ One death occurred between 6-12 months. Patient was reported to have died of COPD by treating physician but cardiac relation could not be excluded.

FANTOM II – Cohort A & B

Safety Results

Definite or Probable Scaffold Thrombosis	
Acute (0 – 1 day)	0.0% (0)
Sub-acute (2 – 30 days)	0.4% (1)
Late (31 – 365 days)	0.0% (0)
Very Late (>365 days) - <i>Interim data</i> set	1 event

All 240 patients beyond 18 months - 125 patients beyond 24 months of follow-up

FANTOM II

Angiographic – QCA Results

In-Scaffold Analysis	Baseline (n=238)¹	Cohort A – 6 Mo. (n=100)
RVD (mm)	2.71 ± 0.37	2.70 ± 0.36
MLD (mm)	0.82 ± 0.31	2.23 ± 0.41
Diameter Stenosis (%)	69.5 ± 11.0	15.3 ± 15.2
Acute Gain (mm)	1.68 ± 0.41	
Acute Recoil (%)	4.0 ± 8.3^2	
Mean LLL (mm)		0.25 ± 0.40
In-Segment Analysis		
Mean LLL (mm)		0.17 ± 0.34

Preliminary
Interim Data Set

Cohort A – 24 Mo. (Subset n=25)		
2.64 ± 0.35		
2.14 ± 0.55		
16.9 ± 20.3		
0.25 ± 0.56		
0.21 ± 0.52		

⁽¹⁾ Baseline angiographic data was not available for two enrolled patients

⁽²⁾ N = 156 patients available for recoil analysis

FANTOM II

Long Term Follow-up Case Sample

- Female, 63 years old
- No angina, 50% LVEF, no family history of CAD
- Hypertension, Hyperlipidemia, non-smoker
- Prior PCI/DES May 14, 2015 in prox CX (MI May 10, 2015)
- 80% stenosis of the mid-LAD
- Treated with a 3.0 x 18mm Fantom scaffold
- Enrollment and Follow-up History

Treated with a 3.0 x 18mm Fantom scaffold : July 28, 2015

6M Follow-up with Imaging: March 1, 2016

12M Follow-up (clinical only):

24M Follow-up with Imaging: August 28 2017

FANTOM II

Long Term Follow-up Case Sample

Index - Pretreatment

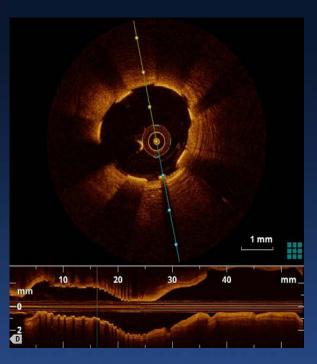
Index – Post Implant

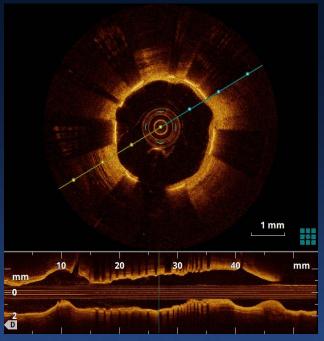
Follow-up 6 Mo.

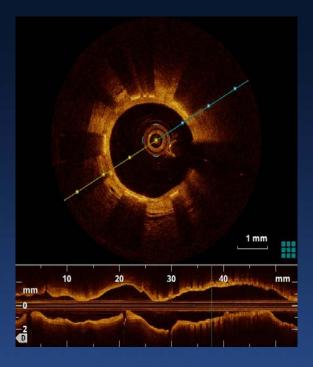
Follow-up 24 Mo.

Procedure Details

- Pre-dilation performed
 - BSC Maverick 2.5 x 15mm balloon
- Fantom Scaffold implant
 - 3.0 x 18mm Fantom deployed at 14atm
- Post Dilation Performed
 - 3.25 x 6mm NC Sprinter to 16atm




FANTOM IILong Term Follow-up Case Sample


Index – Post Implant

Follow-up 6 Mo.

Follow-up 24 Mo.

FANTOM Program Clinical Summary

- Fantom offers new and clinically important features
 - Ease-of-use
 - Radiopacity with complete scaffold visibility
 - Low crossing profile with high flexibility
 - Single-step inflation, no special handling requirements
 - Favorable expansion profile
 - Thin struts and radial strength to facilitate vessel healing
- Data demonstrates continued safety through 24 mo.
 - Low MACE Rate (5.6%)
- Imaging sub-study shows sustained results
 - No change in average late lumen loss from 6 to 24 months
 - No evidence of late or chronic scaffold recoil

Fantom Global Clinical Program

Enrollment Complete - In Follow Up **FANTOM I** First-in-human safety study (n=7) Year 3 Multi-center safety and performance study (n=240) **FANTOM II Cohorts A&B** Year 2 Enrolling -----Long lesion and multiple vessel, multi-center study (n=50) **FANTOM II Cohort C** enrolling **FANTOM STEMI** Single center pilot study in STEMI (n=20) enrolling **Planning FANTOM Registry European post-market multi-center registry (n=125+)** planning **FANTOM III (US pivotal trial)** Multi-center RCT vs. metallic DES (n=1,800-2,200) planning **FANTOM Japan (pivotal trial)** Multi-center RCT vs. metallic DES (n=350-400) planning

Fantom Product Evolution

Next Generation: Fantom Encore

- Thinner struts without compromising radial strength
 - 95 micron on 2.5 mm diameter
- No changes to Tyrocore[™] polymer composition or scaffold design
- Improved polymer processing and manufacturing technique
- European approval and launch anticipated in 2018

Diameter	Fantom	Fantom Encore
2.5 mm	125 µm	95 μm
3.0 mm	125 µm	───── to be announced
3.5 mm	125 µm	──→ to be announced

Thank you!

